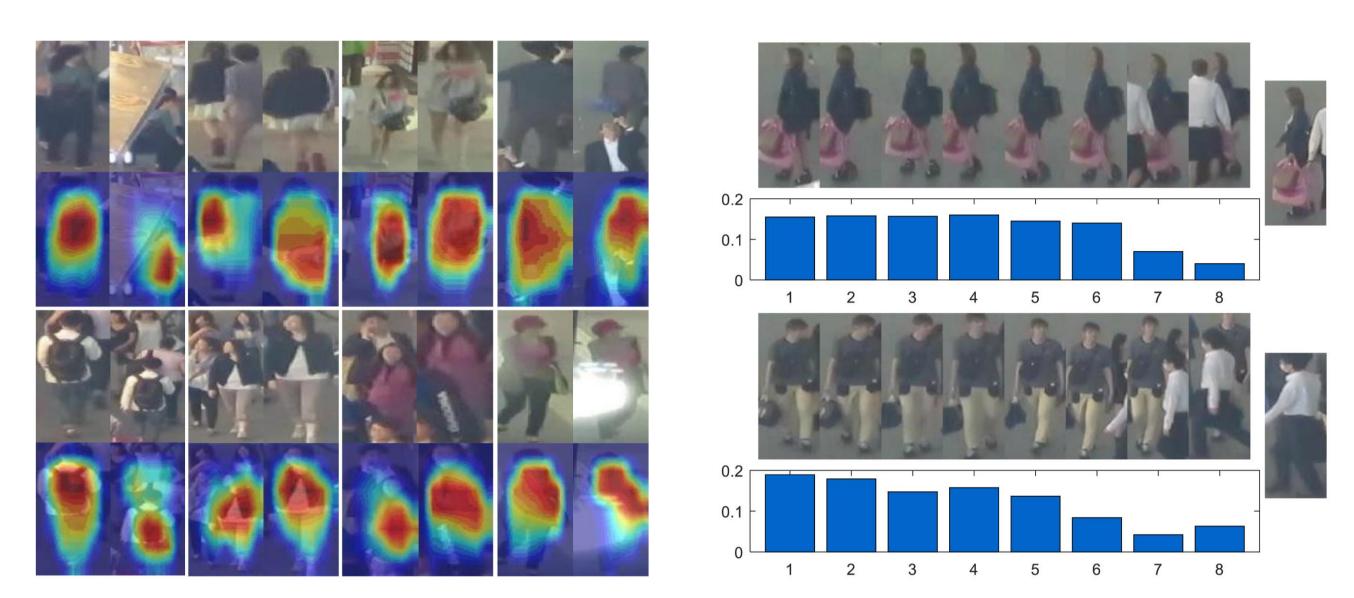


Online Multi-Object Tracking with Dual Matching Attention Networks Ji Zhu^{1,2} Hua Yang¹ Nian Liu³ Minyoung Kim⁴ Wenjun Zhang¹ Ming-Hsuan Yang^{5,6} ¹Shanghai Jiao Tong University ²Visbody Inc ³Northwestern Polytechnical University ⁴Massachusetts Institute of Technology ⁵University of California at Merced ⁶Google Cloud AI https://github.com/jizhu1023/DMAN_MOT

Online MOT Pipeline

Data imbalance in tracking


Approach

$$\frac{f_{j}(t)}{f_{L^{2}}} + \sum_{d=1}^{D} \left\| w(t) f^{d}(t) \right\|_{L^{2}}$$

$$\frac{f_{j}(t)}{-y_{j}(t)} \Big|^{2}$$

$$a_i^{\alpha} = \frac{\exp(\boldsymbol{\theta}_s^{\mathrm{T}} \mathbf{s}_i)}{\sum_{i=1}^{N} \exp(\boldsymbol{\theta}_s^{\mathrm{T}} \mathbf{s}_i)}$$

Visualization of spatial and temporal attention

Performance on the MOT benchmark datasets

Mode	Method	$\mathrm{MOTA} \uparrow$	$\mathrm{MOTP}\uparrow$	$\mathrm{IDF}\uparrow$	$\mathrm{IDP}\uparrow$	$\mathrm{IDR}\uparrow$	$\mathrm{MT}\uparrow$	$\mathrm{ML}\downarrow$	$\mathrm{FP}\downarrow$	$\mathrm{FN}\downarrow$	$\mathrm{IDS}\downarrow$	$\operatorname{Frag}\downarrow$	$\mathrm{AR}\downarrow$
Online	OVBT [3]	38.4	75.4	37.8	55.4	28.7	7.5%	47.3%	11,517	99,463	1,321	$2,\!140$	49.8
	EAMTT $[43]$	38.8	75.1	42.4	65.2	31.5	7.9%	49.1%	8,114	$102,\!452$	965	$1,\!657$	37.4
	oICF [22]	43.2	74.3	49.3	73.3	37.2	11.3%	48.5%	$6,\!651$	96,515	381	1,404	33.3
	CDA_DDAL [2]	43.9	74.7	45.1	66.5	34.1	10.7%	44.4%	$6,\!450$	$95,\!175$	676	1,795	31.8
	STAM $[10]$	46.0	74.9	50.0	71.5	38.5	14.6%	43.6%	6,895	$91,\!117$	473	$1,\!422$	29.6
	AMIR [42]	47.2	75.8	46.3	68.9	34.8	14.0%	41.6%	$2,\!681$	$92,\!856$	774	$1,\!675$	21.8
	Ours	46.1	73.8	54.8	77.2	42.5	17.4%	42.7%	7,909	89,874	532	$1,\!616$	19.3
	QuadMOT [45]	44.1	76.4	38.3	56.3	29.0	14.6%	44.9%	6,388	94,775	745	$1,\!096$	31.9
Offline	EDMT [7]	45.3	75.9	47.9	65.3	37.8	17.0%	39.9%	$11,\!122$	$87,\!890$	639	946	20.3
	MHT_DAM [23]	45.8	76.3	46.1	66.3	35.3	16.2%	43.2%	$6,\!412$	91,758	590	781	23.7
	JMC [47]	46.3	75.7	46.3	66.3	35.6	15.5%	39.7%	6,373	90,914	657	1,114	21.1
	NOMT [9]	46.4	76.6	53.3	73.2	41.9	18.3%	41.4%	9,753	$87,\!565$	359	504	16.3
	MCjoint [21]	47.1	76.3	52.3	73.9	40.4	20.4%	46.9%	6,703	89,368	370	598	18.6
	NLLMPa [29]	47.6	78.5	47.3	67.2	36.5	17.0%	40.4%	$5,\!844$	89,093	629	768	16.8
	LMP [48]	48.8	79.0	51.3	71.1	40.1	18.2%	40.1%	$6,\!654$	86,245	481	595	14.8

Mode	Method	MOTA \uparrow	$\mathrm{MOTP}\uparrow$	$\mathrm{IDF}\uparrow$	$\mathrm{IDP}\uparrow$	$\mathrm{IDR}\uparrow$	$\mathrm{MT}\uparrow$	$\mathrm{ML}\downarrow$	$\mathrm{FP}\downarrow$	$\mathrm{FN}\downarrow$	$IDS\downarrow$	$\operatorname{Frag}\downarrow$	$\mathrm{AR}\downarrow$
Online	GM_PHD [16] GMPHD_KCF [26] E2EM Ours	36.4 39.6 47.5 48.2	76.2 74.5 76.5 75.9	33.9 36.6 48.8 55.7	54.2 49.6 68.4 75.9		$8.8\%\ 16.5\%$	43.3% 37.5%	50,903 20,655	330,767 284,228 272,187 263,608	$5,\!811$ $3,\!632$	$7,414 \\ 12,712$	$\begin{array}{c} 23.5 \\ 13.1 \end{array}$
Offline	IOU [5] EDMT [7] MHT_DAM[23]	45.5 50.0 50.7	76.9 77.3 77.5	39.4 51.3 47.2	56.4 67.0 63.4	41.5	21.6%	36.3%	$32,\!279$	281,643 247,297 252,889	2,264	3,260	16.4 9.9 10.8

Experiments

Table 1. Tracking performance on the MOT16 dataset.

Table 2. Tracking performance on the MOT17 dataset.

Conclusions

• Introduce a cost-sensitive tracking loss for single object tracking. • Propose a spatial attention network which generates dual attention maps to focus on matching regions between the paired images. Design a temporal attention network to adaptively allocate different degrees of attention to different observations in the trajectory. Achieve favorable performance against the state-of-the-art online and offline MOT methods in terms of identity-preserving metrics.